Eleftherianos Lab at The George Washington University
  • Research
  • Team
  • Publications
  • Courses
  • News
  • Gallery
    • Research Day 2017
    • Research Day 2018
  • Opportunities
  • Living in DC
    • The District
    • GWU Facts
  • Resources
  • Contact
  • Research
  • Team
  • Publications
  • Courses
  • News
  • Gallery
    • Research Day 2017
    • Research Day 2018
  • Opportunities
  • Living in DC
    • The District
    • GWU Facts
  • Resources
  • Contact
Eleftherianos Lab at The George Washington University
Picture

publications

We read. We write. We conquer!​

Insect interaction with nematodes and their bacteria
  1. Motaher R, Grill E, McKean E, Kenney E, Eleftherianos I, Hawdon JM, O'Halloran, DM. (2021). Chemogenic approach to identifying nematode chemoreceptor drug targets in the entomopathogenic nematode Heterorhabditis bacteriophora. Computational Biology and Chemistry, In Press.
  2. Kenney E, Yaparala A, Hawdon JM, O'Halooran DM, Grayfer L, Eleftherianos I (2020). A putative lysozyme and serine carboxypeptidase from Heterorhabditis bacteriophora show differential virulence capacities in Drosophila melanogaster. Developmental and Comparative Immunology 103820.
  3. Kenney E, Yaparala A, Hawdon JM, O'Halooran DM, Grayfer L, Eleftherianos I (2020). A putative UDP-glycosyltransferase from Heterorhabditis bacteriophora suppresses antimicrobial peptide gene expression and factors related to ecdysone signaling. Scientific Reports 10, 12312.
  4. Ozakman Y, Eleftherianos I (2020). The Drosophila melanogaster metabolic response against parasitic nematode infection is mediated by TGF-beta signaling. Microorganisms 8, E971.
  5. Kenney E, Hawdon JM, O'Halloran D, Eleftherianos I (2019). Heterorhabditis bacteriophora Excreted-Secreted Products Enable Infection by Photorhabdus luminescens Through Suppression of the Imd Pathway. Frontiers in Immunology 10:2372. doi: 10.3389/fimmu.2019.02372
  6. Chevée V, Sachar U, Yadav S, Heryanto C, Eleftherianos I (2019). The peptidoglycan recognition protein PGRP-LE regulates the Drosophila immune response against the pathogen Photorhabdus. Microbial Pathogenesis 136, 103664.
  7. Harsh S, Heryanto C, Eleftherianos I (2019). Intestinal lipid droplets as novel mediators of host-pathogen interaction in Drosophila. Biology Open pii: bio039040.
  8. Yadav S, Eleftherianos I (2019). Participation of the serine protease Jonah66Ci in the Drosophila anti-nematode immune response. Infection and Immunity 87 (9) pii: e00094-19.
  9. Ozakman Y, Eleftherianos I (2019). TGF-beta signaling interferes with the Drosophila innate immune and metabolic response to parasitic nematode infection. Frontiers in Physiology 10, 716. doi: 10.3389/fphys.2019.00716
  10. Patrnogic J, Heryanto C, Ozakman Y, Eleftherianos I (2019). Transcript analysis reveals the involvement of NF-kB transcription factors for the activation of TGF-beta signaling in nematode-infected Drosophila. Immunogenetics doi: 10.1007/s00251-019-01119-8. [Epub ahead of print].
  11. Cooper D, Wuebbolt C, Heryanto C, Eleftherianos I (2019). The prophenoloxidase system in Drosophila participates in the anti-nematode immune response. Molecular Immunology 109, 88-98.
  12. Yadav S, Eleftherianos I (2018). The imaginal disc growth factors 2 and 3 participate in the Drosophila response to nematode infection. Parasite Immunology 40, e12581. 
  13. Yadav S, Eleftherianos I (2018). Prolonged storage increases virulence of Steinernema entomopathogenic nematodes towards Drosophila larvae. Journal of Parasitology 104, 722-725. 
  14. Patrnogic J, Heryanto C, Eleftherianos I (2018). Trancriptional up-regulation of the TGF-beta intracellular signaling transducer Mad of Drosophila larvae in response to parasitic nematode infection. Innate Immunity 24, 349-356.
  15. Patrnogic J, Heryanto C, Eleftherianos I (2018). Wounding-induced upregulation of the Bone Morphogenic Protein signaling pathway in Drosophila promotes survival against parasitic nematode infection. Gene 673, 112–118.
  16. Shokal U, Kopydlowski H, Harsh S, Eleftherianos I (2018). Thioester-Containing Proteins 2 and 4 Affect the Metabolic Activity and Inflammation Response in Drosophila. Infection and Immunity 86, pii: IAI.00810-17.
  17. Yadav S, Gupta S, Eleftherianos I (2018). Differential Regulation of Immune Signaling and Survival Response in Drosophila melanogaster Larvae upon Steinernema carpocapsae Nematode Infection. Insects 9, pii: E17.
  18. Shokal U, Eleftherianos I (2017). The Drosophila thioester containing protein-4 participates in the induction of the cellular immune response to the pathogen Photorhabdus. Developmental and Comparative Immunology 76, 200-208. 
  19. Shokal U, Kopydlowski H, Eleftherianos I (2017). The distinct function of Tep2 and Tep6 in the immune defense of Drosophila melanogaster against the pathogen Photorhabdus. Virulence 8, 1668-1682.
  20. Yadav S, Daugherty S, Shetty AC, Eleftherianos I (2017). RNAseq Analysis of the Drosophila Response to the Entomopathogenic Nematode Steinernema. G3 7, 1955-1967.
  21. Casanova-Torres ÁM, Shokal U, Morag N, Eleftherianos I, Goodrich-Blair H (2017). The global transcription factor Lrp is both essential for and inhibitory to Xenorhabdus nematophila insecticidal activity. Applied Environmental Microbiology 83, pii: e00185-17.
  22. Vadnal J, Ratnappan R, Keaney M, Kenney E, Eleftherianos I, O'Halloran D, Hawdon JM (2017). Identification of candidate infection genes from the model entomopathogenic nematode Heterorhabditis bacteriophora. BMC Genomics 18, 8.
  23. Shokal U, Eleftherianos I (2016). Thioester-containing protein-4 regulates the Drosophila immune signaling and function against the pathogen Photorhabdus. Journal of Innate Immunity 9, 83-93. 
  24. Eleftherianos I, Castillo JC, Patrnogic, J (2016). TGF-beta signaling regulates resistance to parasitic nematode infection in Drosophila melanogaster. Immunobiology 221:1362-1368. 
  25. Castillo JC, Creasy T, Kumari P, Shetty A, Shokal U, Tallon LJ, Eleftherianos I (2015). Drosophila anti-nematode and antibacterial immune regulators revealed by RNA-Seq. BMC Genomics 16, 519.
  26. Castillo JC, Shokal U, Eleftherianos I (2012). Immune gene transcription in Drosophila adult flies infected by entomopathogenic nematodes and their mutualistic bacteria. Journal of Insect Physiology 59, 179-185.
  27. Felfoldi G, Eleftherianos I, ffrench-Constant RH, Venekei I (2011). A serine proteinase homologue, SPH-3, plays a central role in insect immunity. Journal of Immunology 186, 4828-4834.
  28. Vlissidou I, Eleftherianos I, Dorus S, Yang G, ffrench-Constant RH, Reynolds SE, Waterfield NR (2010). The Kdp/KdpE two component system of Photorhabdus asymbiotica promotes bacterial survival within M. sexta hemocytes. Journal of Invertebrate Pathology 105, 352-362.
  29. Eleftherianos I, Joyce S, ffrench-Constant RH, Clarke DJ, Reynolds SE (2010). Probing the tri-trophic interaction between insects, nematodes and Photorhabdus. Parasitology 137, 1695-1706.
  30. Eleftherianos I, Felfoldi G, ffrench-Constant RH, Reynolds, SE (2009). Induced nitric oxide synthesis in the gut of Manduca sexta protects against oral infection by the bacterial pathogen Photorhabdus luminescens. Insect Molecular Biology 18, 507-516.
  31. Eleftherianos I, Xu M, Yadi H, ffrench-Constant RH, Reynolds SE (2009). Plasmatocyte-spreading peptide (PSP) plays a central role in insect cellular immune defences against bacterial infection. Journal of Experimental Biology 212, 1840-1848.
  32. Eleftherianos I, Waterfield NR, Bone P, Boundy S, ffrench-Constant RH, Reynolds SE (2009). A single locus from the entomopathogenic bacterium Photorhabdus luminescens inhibits activated Manduca sexta phenoloxidase. FEMS Microbiology Letters293, 170-176.
  33. Waterfield NR, Sanchez-Contreras M, Eleftherianos I, Dowling A, Wilkinson MP, Thompson M, Reynolds SE, Bode HB, ffrench-Constant RH (2008). Rapid Virulence Annotation (RVA) of the model emerging human pathogen Photorhabdus asymbiotica. Proceedings of the National Academy of Sciences 105, 15967-15972.
  34. Eleftherianos I, Baldwin H, ffrench-Constant RH, Reynolds SE (2008). Defence reactions of Manduca sexta to entomopathogens: effect of larval-host age on the immune response to Photorhabdus. Journal of Insect Physiology 54, 309-318.
  35. Eleftherianos I, Boundy S, Joyce S, Aslam S, Marshall J, Cox R, Simpson T, Clarke D, ffrench-Constant R, Reynolds S (2007). An antibiotic produced by an insect-pathogenic bacterium suppresses host defenses through phenoloxidase inhibition. Proceedings of the National Academy of Sciences 104, 2419-2424.
  36. Eleftherianos I, Marokhazi J, Millichap P, Hodgkinson A, Scriboonlert A, ffrench-Constant RH, Reynolds SE (2006). Prior infection of Manduca sexta with non-pathogenic Escherichia coli elicits immunity to pathogenic Photorhabdus luminescens: Roles of immune-related proteins shown by RNA interference. Insect Biochemistry and Molecular Biology 36, 517-525.
  37. Eleftherianos I, Millichap P, ffrench-Constant RH, Reynolds, SE (2006). RNAi suppression of recognition protein mediated immune responses in the tobacco hornworm Manduca sexta causes increased susceptibility to the insect pathogen Photorhabdus. Developmental and Comparative Immunology 30, 1099-1107.
Aging and immune response
  1. Bhadra R, Moretto MM, Castillo JC, Petrovas C, Ferrando-Martinez S, Shokal U, Leal M, Koup RA, Eleftherianos I, Khan IA (2014). Intrinsic TGFβ signaling promotes age-dependent CD8+ T cell polyfunctionality attrition. Journal of Clinical Investigation 124, 2441-2455.  
  2. McCormack S, Yadav S, Shokal U, Kenney, E, Cooper D, Eleftherianos I (2016). The insulin receptor substrate Chico regulates antibacterial immune function in Drosophila. Immunity & Ageing 13, 15. ​
insect endosymbionts
  1. Yadav S, Frazer, J, Banga A, Pruitt K, Harsh S, Jaenike J, Eleftherianos I (2018). Endosymbiont-based immunity in Drosophila melanogaster against parasitic nematode infection. PLoS One 13, e0192183.
  2. Shokal U, Yadav S, Atri J, Accetta J, Kenney E, Banks K, Katakam A, Jaenike J, Eleftherianos I (2016). Effects of co-occurring Wolbachia and Spiroplasma endosymbionts on the Drosophila immune response against insect pathogenic and non-pathogenic bacteria. BMC Microbiology 16, 16. ​
insect immune response
  1. Harsh S, Fu Y, Kenney E, Han Z, Eleftherianos (2020). Zika virus non-structural protein NS4A restricts eye growth in Drosophila through regulation of JAK/STAT signaling. Disease Models & Mechanisms pii: dmm.040816.
  2. Harsh S, Heryanto C, Eleftherianos I (2019). Intestinal lipid droplets as novel mediators of host-pathogen interaction in Drosophila. Biology Open bio.039040 doi: 10.1242/bio.039040
  3. Harsh S, Ozakman Y, Kitchen SM, Paquin-Proulx D, Nixon DF, Eleftherianos I (2018). Dicer-2 regulates resistance and maintains homeostasis against Zika virus infection in Drosophila. Journal of Immunology 201, 3058-3072.
  4. Bachtel NB, Hovsepian GA, Nixon DF, Eleftherianos I (2018). Allatostatin C modulates nociception and immunity in Drosophila. Scientific Reports 8, 7501.
  5. Eleftherianos I, More K, Spivack S, Paulin E, Khojandi A, Shukla S (2014). Nitric oxide levels regulate the immune response of Drosophila melanogaster reference laboratory strains to bacterial infections. Infection and Immunity 82, 4169-4181. 
  6. Stoepler TM, Castillo JC, Lill JT, Eleftherianos I (2013). Hemocyte density increases with developmental stage in an immune-challenged forest caterpillar. PLOS One 8, e70978.
  7. Eleftherianos I, Won S, Chtarbanova S, Squiban B, Ocorr K, Bodmer R, Beutler B, Hoffmann JA, Imler JL (2011). ATP-sensitive potassium channel (KATP)-dependent regulation of cardiotropic viral infections. Proceedings of the National Academy of Sciences 108, 1024-1029.
  8. Hares M, Hinchliffe S, Strong P, Eleftherianos I, Dowling A, ffrench-Constant R, Waterfield N (2008). The Yersinia pseudotuberculosis and Yersinia pestis Toxin Complex is active against cultured mammalian cells. Microbiology 154, 3503-3517.
  9. Croker B, Crozat K, Berger M, Xia Y, Sovath S, Eleftherianos I, Imler JL, Beutler B (2007). ATP-sensitive potassium channels mediate survival during infection in mammals and insects. Nature Genetics 39, 1453-1460.   
  10. Eleftherianos I, Gokcen F, Millichap P, Felfoldi G, Trenczek T, ffrench-Constant R, Reynolds SE (2007). The immunoglobulin family protein Hemolin mediates cellular immune responses in the insect Manduca sexta. Cellular Microbiology9, 1137-1147.
methods
  1. Vadnal J, Granger OG, Ratnappan R, Eleftherianos I, O'Halloran DM, Hawdon JM (2018). Refined ab initio gene predictions of Heterorhabditis bacteriophora using RNA-seq. International Journal for Parasitology 48, 585-590.
  2. Ratnappan R, Vadnal J, Keaney M, Eleftherianos I, O’Halloran D, Hawdon JM (2016). RNAi-mediated gene knockdown by microinjection in the model entomopathogenic nematode Heterorhabditis bacteriophora. Parasites and Vectors 9, 160. 
  3. Yadav S, Shokal U, Forst S, Eleftherianos I (2015). An improved method for generating axenic entomopathogenic nematodes. BMC Research Notes 8, 461.
  4. Stoepler TM, Castillo JC, Lill JT, Eleftherianos I (2012). A simple protocol for extracting hemocytes from wild caterpillars. Journal of Visualized Experiments 15, pii:4173.
  5. Castillo JC, Shokal U, Eleftherianos I (2012). A novel method for infecting Drosophila adult flies with insect pathogenic nematodes. Virulence 3, 339-347.
  6. Terenius O, Papanicolaou A, Garbutt JS, Eleftherianos I, et al. (2011). RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. Journal of Insect Physiology 57, 231-245.
REVIEWS
  1. Eleftherianos I, Heryanto C. (2021). Transcriptomic Insights into the Insect Immune Response to Nematode Infection. Genes 12, 10.3390/genes12020202.
  2. Kenney E, Hawdon JM, O'Halloran DM, Eleftherianos I. (2021). Secreted virulence factors from Heterorhabditis bacteriophora highlight its utility as a model parasite among Clade V nematodes. International Journal for Parasitology S0020-7519(20)30336-2. doi: 10.1016/j.ijpara.2020.10.004.
  3. Harsh S, Eleftherianos I. (2020). Flavivirus infection and regulation of host immune and tissue homeostasis in insects. Frontiers in Immunology 11, 618801.
  4. Kenney E, Hawdon JM, O'Halloran DM, Eleftherianos I. (2020). Secreted virulence factors from Heterorhabditis bacteriophora highlight its utility as a model parasite among Clade V nematodes. International Journal for Parasitology (Accepted).
  5. Ozakman Y, Eleftherianos I. (2020). Immune interactions between Drosophila and the pathogen Xenorhabdus. Microbiological Research 240, 126568.
  6. Heryanto C, Eleftherianos I. (2020). Nematode endosymbiont competition: Fortune favors the fittest. Molecular & Biochemical Parasitology 111298. doi: 10.1016/j.molbiopara.2020.111298. Online ahead of print.
  7. Tafesh-Edwards G, Eleftherianos I. (2020). JNK signaling in Drosophila immunity and homeostasis. Immunology Letters 226, 7-11.
  8. Eleftherianos I, Sachar U. (2020). Thioester-containing Proteins in the Drosophila melanogaster Immune Response against the Pathogen Photorhabdus. Insects 11, pit: E85.
  9. Tafesh-Edwards G, Eleftherianos I. (2019). Drosophila immunity against natural and nonnatural viral pathogens. Virology 540, 165-171. 
  10. Eleftherianos I, Yadav S, Kenney E, Cooper D, Ozakman Y, Patrnogic J (2017). Role of Endosymbionts in Insect–Parasitic Nematode Interactions. Trends in Parasitology 34, 430-444.
  11. Shokal U, Eleftherianos I (2017) Evolution and function of thioester-containing proteins and the complement system in the innate immune response. Frontiers in Immunology 8, 759.
  12. Cooper D, Eleftherianos I (2017). Memory and specificity in the insect immune system: Current perspectives and future challenges. Frontiers in Immunology 8, 539. 
  13. Cooper D, Eleftherianos I (2016). Parasitic nematode immunomodulatory strategies: Recent advances and perspectives. Pathogens 5, pii: E58.
  14. Kenney E, Eleftherianos I (2015). Entomopathogenic and plant pathogenic nematodes as opposing forces in agriculture. International Journal for Parasitology 46, 13-19.
  15. Stokes BA, Yadav S, Shokal U, Smith LC, Eleftherianos I (2015). Bacterial and fungal pattern recognition receptors in homologous innate signaling pathways of insects mammals. Frontiers in Microbiology 6, 19. 
  16. Eleftherianos I, Atri J, Accetta J, Castillo JC (2013). Endosymbiotic bacteria in insects: guardians of the immune system? Frontiers in Physiology 4, 46.
  17. Eleftherianos I, Castillo JC (2012). Molecular mechanisms of aging and immune system regulation in Drosophila. International Journal of Molecular Sciences 13, 9826-9844.
  18. Castillo JC, Reynolds SE, Eleftherianos I (2011). Insect immune responses to nematode parasites. Trends in Parasitology 27, 537-547.  
  19. Eleftherianos I, Schneider S (2011). Drosophila immunity research on the move. Fly 5, 1-8.
  20. Eleftherianos I, Revenis C (2011). Role and importance of phenoloxidase in insect hemostasis. Journal of Innate Immunity 3, 28-33.  
  21. Eleftherianos I, ffrench-Constant RH, Clarke DJ, Dowling AJ, Reynolds SE (2010). Dissecting the immune response to the entomopathogen Photorhabdus. Trends in Microbiology 18, 552-560.
  22. Eleftherianos I (2009). Novel antibiotic compounds produced by the insect pathogenic bacterium Photorhabdus. Recent Patents on Anti-Infective Drug Discovery 4, 81-89.
  23. ffrench-Constant RH, Eleftherianos I, Reynolds SE (2007). Nematode symbionts shed light on invertebrate immunity. Trends in Parasitology 23, 514-517. 
​
insectiCide resistance
  1. Eleftherianos I, Foster SP, Williamson MS, Denholm I (2008). Inheritance of L1014F and M918T sodium channel mutations associated with pyrethroid resistance in Myzus persicae (Sulzer). Biology Letters 4, 545-548.
  2. Eleftherianos I, Foster SP, Williamson MS, Denholm I (2008). Characterization of the M918T sodium channel gene mutation associated with strong resistance to pyrethroid insecticides in the peach-potato aphid, Myzus persicae (Sulzer). Bulletin of Entomological Research 98, 183-191.
  3. Anstead JA, Williamson MS, Eleftherianos I, Denholm I (2004). High-throughput detection of  knockdown resistance in Myzus persicae using allelic discriminating quantitative PCR. Insect Biochemistry and Molecular Biology 34, 871-877. ​
insect-plant-parasitoid interactions
  1. van Emden HF, Storeck AP, Douloumpaka S, Eleftherianos I, Poppy GM, Powell W (2008). Learning and memory of plant chemistry by aphid parasitoids. European Journal of Entomology 105, 477-483. 
  2. Eleftherianos IG, Vamvatsikos PG, Ward RD, Gravanis FT (2006). Effect of plant total phenols and free amino acids on the reproduction of two cereal aphids. Journal of Applied Entomology 130, 15-19.
  3. van Emden HF, Eleftherianos IG, Rose J, Douloumpaka S, Pettersson J (2002). Aphid parasitoids detect that an alien plant was present nearby during their development. Physiological Entomology 27, 199-205.
book chapters
  1. Heryanto C, Eleftherianos I. (2020). Molecular regulators of entomopathogenic nematode-bacterial symbiosis. In: 'Results and Problems in Cell Differentiation- Symbiosis: Cellular, Molecular, Medical and Evolutionary Aspects' Edited by Malgorzata Kloc, Chapter 17, pp. 453-468.
  2. Heryanto C, Kenney E, Eleftherianos I. (2019). A workflow for infection of Drosophila with entomopathogenic nematodes to monitor immune gene transcriptional activity. In: Springer Protocols Handbook 'Immunity in Insects', Edited by Federica Sandrelli and Gianluca Tettamanti, pp. 203-216.
  3. Eleftherianos I, Shokal U, Yadav S, Kenney E, Maldonado T (2017). Insect Immunity to Entomopathogenic Nematodes and Their Mutualistic Bacteria. Current Top Microbiology and Immunology. In: Springer Berlin Heidelberg, 402, 123-156.
  4. Eleftherianos I, Imler JL (2008). Drosophila as a model for studying antiviral defenses. In: 'Insect Infection and Immunity', Edited by Stuart Reynolds & Jens Rolff. Oxford University Press. Chapter 4, pp. 49-68.
  5. Reynolds SE, Eleftherianos I (2008). RNAi and the insect immune system. In: 'Insect Immunology', Edited by Nancy Beckage. Elsevier, Chapter 12, pp. 295-330.
conference proceedings
  1. Eleftherianos I, Foster S, Goodson S, Williamson, M, Denholm I (2004). Toxicological and molecular characterisation of pyrethroid knockdown resistance (kdr) in the peach-potato aphid, Myzus persicae (Sulzer). In: J. C. Simon, C. A. Dedryver, C. Rispe and M. Hulle (Eds), Proceedings of the Sixth International Symposium on Aphids "Aphids in a New Millenium", pp. 213-218. INRA Editions, Paris.
  2. Eleftherianos I, Foster SP, Williamson MS, Denholm I (2002). Behavioural consequences of pyrethroid resistance in the peach-potato aphid, Myzus persicae (Sulzer). Proceedings of the Brighton Crop Protection Conference Pests and Diseases; 2, 745-748.
Drosophila and human diseases
  1. Harsh S, Eleftherianos (2020). Tumor induction in Drosophila imaginal epithelia triggers modulation of fat body lipid droplets. Biochimie 179, 65-68.
  2. Harsh S, Fu Y, Kenney E, Han Z, Eleftherianos (2020). Zika virus non-structural protein NS4A restricts eye growth in Drosophila through regulation of JAK/STAT signaling. Disease Models & Mechanisms pii: dmm.040816.
  3. Harsh S, Ozakman Y, Kitchen SM, Paquin-Proulx D, Nixon DF, Eleftherianos I (2018). Dicer-2 regulates resistance and maintains homeostasis against Zika virus infection in Drosophila. Journal of Immunology 201, 3058-3072.
  4. Duarte RRR, Bachtel ND, Côtel MC, Lee SH, Selvackadunco S, Watson IA, Hovsepian GA, Troakes C, Breen GD, Nixon DF, Murray RM, Bray NJ, Eleftherianos I, Vernon AC, Powell TR, Srivastava DP (2019). The Psychiatric Risk Gene NT5C2 Regulates Adenosine Monophosphate-Activated Protein Kinase Signaling and Protein Translation in Human Neural Progenitor Cells. Biological Psychiatry 86, 120-130.
Powered by Create your own unique website with customizable templates.